Section 1.5

Math 231

Hope College

- Given a vector v ∈ ℝⁿ and a point x₀ ∈ ℝⁿ, the parametric equation of the line passing through x₀ parallel to v is
 L(t) = vt + x₀.
- Example: Find a parametric equation for the line in ℝ³ containing the points (1, 3, -7) and (2, -5, 1).

ヘロト 人間 ト ヘヨト ヘヨト

- Given a vector v ∈ ℝⁿ and a point x₀ ∈ ℝⁿ, the parametric equation of the line passing through x₀ parallel to v is
 L(t) = vt + x₀.
- Example: Find a parametric equation for the line in ℝ³ containing the points (1, 3, -7) and (2, -5, 1).

- Given a vector v ∈ ℝⁿ and a point x₀ ∈ ℝⁿ, the parametric equation of the line passing through x₀ parallel to v is
 L(t) = vt + x₀.
- Example: Find a parametric equation for the line in ℝ³ containing the points (1,3, -7) and (2, -5, 1).

The slope vector is obtained by subtracting the coordinates of the points: $\vec{v} = \langle 1, -8, 8 \rangle$. The parametric equation is therefore

$$L(t) = \langle 1, -8, 8 \rangle t + \langle 1, 3, -7 \rangle.$$

ヘロン 人間 とくほ とくほ とう

- Given a vector v ∈ ℝⁿ and a point x₀ ∈ ℝⁿ, the parametric equation of the line passing through x₀ parallel to v is
 L(t) = vt + x₀.
- Example: Find a parametric equation for the line in ℝ³ containing the points (1,3, -7) and (2, -5, 1).

The slope vector is obtained by subtracting the coordinates of the points: $\vec{v} = \langle 1, -8, 8 \rangle$. The parametric equation is therefore

$$L(t) = \langle 1, -8, 8 \rangle t + \langle 1, 3, -7 \rangle.$$

This can also be written as

$$L(t) = \langle t+1, -8t+3, 8t-7 \rangle,$$

or as a system of parametric equations:

$$x = t + 1$$
, $y = -8t + 3$, $z = 8t - 7$.

• Given two vectors $\vec{u}, \vec{v} \in \mathbb{R}^3$ such that neither \vec{u} nor \vec{v} is a scalar multiple of the other, the set

$$\mathsf{P}(s,t) = ec{\mathsf{u}}s + ec{\mathsf{v}}t + ec{\mathsf{x}}_0$$

is a plane in \mathbb{R}^3 containing point \vec{x}_0 and parallel to the vectors \vec{u} and \vec{v} .

Math 231 Section 1.5

- Given a nonzero vector n
 in ℝ² or ℝ³, think about the set of all vectors emanating from a point x
 i₀ that are perpendicular to n
 i.
- The set of all such vectors forms a line through \vec{x}_0 in \mathbb{R}^2 , or a plane through \vec{x}_0 in \mathbb{R}^3 .
- The equation defining the set of all such vectors is

$$\vec{\mathbf{n}} \cdot (\vec{\mathbf{x}} - \vec{\mathbf{x}}_0) = 0.$$

- In ℝ², this shows that Ax + By = C defines a line with normal vector (A, B).
- In ℝ³, this shows that Ax + By + Cz = D defines a plane with normal vector (A, B, C).

ヘロト ヘアト ヘヨト ヘ

- Given a nonzero vector n
 in ℝ² or ℝ³, think about the set of all vectors emanating from a point x
 i₀ that are perpendicular to n
 i.
- The set of all such vectors forms a line through x
 ₀ in ℝ², or a plane through x
 ₀ in ℝ³.
- The equation defining the set of all such vectors is

$$\vec{\mathbf{n}} \cdot (\vec{\mathbf{x}} - \vec{\mathbf{x}}_0) = 0.$$

- In ℝ², this shows that Ax + By = C defines a line with normal vector (A, B).
- In ℝ³, this shows that Ax + By + Cz = D defines a plane with normal vector (A, B, C).

ヘロト 人間 ト ヘヨト ヘヨト

- Given a nonzero vector n
 in ℝ² or ℝ³, think about the set of all vectors emanating from a point x
 i₀ that are perpendicular to n
 i.
- The set of all such vectors forms a line through x
 ₀ in ℝ², or a plane through x
 ₀ in ℝ³.
- The equation defining the set of all such vectors is

$$\vec{\mathbf{n}} \cdot (\vec{\mathbf{x}} - \vec{\mathbf{x}}_0) = 0.$$

- In ℝ², this shows that Ax + By = C defines a line with normal vector ⟨A, B⟩.
- In ℝ³, this shows that Ax + By + Cz = D defines a plane with normal vector (A, B, C).

ヘロト ヘアト ヘビト ヘビト

- Given a nonzero vector n
 in ℝ² or ℝ³, think about the set of all vectors emanating from a point x
 i₀ that are perpendicular to n
 i.
- The set of all such vectors forms a line through x
 ₀ in ℝ², or a plane through x
 ₀ in ℝ³.
- The equation defining the set of all such vectors is

$$\vec{\mathbf{n}} \cdot (\vec{\mathbf{x}} - \vec{\mathbf{x}}_0) = 0.$$

- In ℝ², this shows that Ax + By = C defines a line with normal vector (A, B).
- In ℝ³, this shows that Ax + By + Cz = D defines a plane with normal vector (A, B, C).

・ロト ・ 理 ト ・ ヨ ト ・

- Given a nonzero vector n
 in R² or R³, think about the set of all vectors emanating from a point x
 in that are perpendicular to n
 i.
- The set of all such vectors forms a line through x
 ₀ in ℝ², or a plane through x
 ₀ in ℝ³.
- The equation defining the set of all such vectors is

$$\vec{\mathbf{n}} \cdot (\vec{\mathbf{x}} - \vec{\mathbf{x}}_0) = 0.$$

- In ℝ², this shows that Ax + By = C defines a line with normal vector ⟨A, B⟩.
- In ℝ³, this shows that Ax + By + Cz = D defines a plane with normal vector (A, B, C).